Profit From Your Forecasting Software by Paul Goodwin

Profit From Your Forecasting Software by Paul Goodwin

Author:Paul Goodwin
Language: eng
Format: epub
ISBN: 9781119416005
Publisher: Wiley
Published: 2018-04-10T00:00:00+00:00


CHAPTER 6

Regression Models

6.1 INTRODUCTION

In the previous two chapters, we looked at univariate, or time series, forecasting methods that only used data from the sales history to produce their forecasts. These methods therefore don't make use of information on factors that might be influencing or driving sales, such as expenditure on marketing activities, pricing, or the weather. By modeling the effect of these factors, we might obtain more accurate forecasts. But this is not guaranteed; the simpler univariate methods often do better.

In this chapter, we will look at how to use your software to create models that attempt to explain variations in sales by measuring the influence of potential drivers. If you have information on the future values of these drivers, you can then use the models to produce forecasts. The models we will look at are called regression models. The process of obtaining these models is underpinned by a number of technical assumptions that you will find in the appendix to the chapter. We start by looking at the simplest form of regression (so-called bivariate regression) where only one factor is used to predict sales. Towards the end of the chapter we will compare the advantages and disadvantages of univariate methods and regression.



Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.