E=mc2: A Biography of the World's Most Famous Equation by David Bodanis

E=mc2: A Biography of the World's Most Famous Equation by David Bodanis

Author:David Bodanis [Bodanis, David]
Language: eng
Format: epub, mobi
Tags: Science, General, Physics, History
ISBN: 9780802718211
Google: 8TX2tFLZ7gYC
Publisher: Bloomsbury
Published: 2000-01-02T00:00:00+00:00


v e r y

o n e w

e l l g

e t i t

It's not easy. But if you start reading it instead as "Not everyone . . . " then it leaps out. What Cecilia Payne decided on, there in 1920s Boston, was a Ph.D. project that would let her confirm and further develop a new theory about how to build up spectroscope interpretations. Her work was more complicated than our example above, for spectroscope lines from the sun will always include fragments of several elements; there are distortions from the great temperature as well.

An analogy can show what Payne did. If astronomers are convinced there's going to be lots of iron in the sun (which seemed fair for there was so much iron on Earth and in asteroids), there'd be only one way to read an ambiguous string of lines from a spectroscope. If they came out, for example, as:

t h e y s a i d i r o n a g a i e n

you'd parse it to read:

t h e y s a i d I r o n a g a i e n

and there'd be no need to worry too much about the odd spelling of agaien. The extra e could be a fault in the spectroscope, or some odd reaction on the sun, or just a fragment that was slipped in from some other element. There's always something that doesn't fit. But Payne kept an open mind. What if it was really trying to communicate:

t H e y s a i d i r o n a g a i e n

She went through the spectroscope lines over and over again, checking for these ambiguities. Everyone had boosted the lines one way, to make it read as if they were for iron. But it wasn't too much of a stretch to boost them differently, so that they read hydrogen, not iron.

Even before Payne finished her doctorate, her results began to spread in gossip among astrophysicists. While the old explanation of the spectroscope data had been that the sun was two-thirds iron or more, this young woman's interpretation was that it was over 90 percent hydrogen, with most of the rest being the nearly as lightweight helium. If she was right, it would change what was understood about how stars burn. Iron is so stable that no one could imagine it transformed through E=mc2 to generate heat in our Sun. But who knew what hydrogen might do?

The old guard knew. Hydrogen would do nothing. It wasn't there, it couldn't be there; their careers—all their detailed calculations, and the power and patronage that stemmed from it—depended on iron being what was in the sun. After all, hadn't this female only picked up the spectroscopic lines from the sun's outer atmosphere, rather than its deep interior? Maybe her readings were simply confused by the temperature shifts or chemical mixes there. Her thesis adviser declared her wrong, and then his old thesis adviser, the imperious Henry Norris Russell, declared her wrong, and against him there was very little recourse.



Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.