Enhancing NO Uptake in Metal-Organic Frameworks via Linker Functionalization. A Multi-Scale Theoretical Study by Charalampos G. Livas Emmanuel Tylianakis & George E. Froudakis

Enhancing NO Uptake in Metal-Organic Frameworks via Linker Functionalization. A Multi-Scale Theoretical Study by Charalampos G. Livas Emmanuel Tylianakis & George E. Froudakis

Author:Charalampos G. Livas, Emmanuel Tylianakis & George E. Froudakis
Format: pdf
Tags: In the present work, ab initio calculations and Monte Carlo simulations were combined to investigate the effect of linker functionalization on nitric oxide (NO)’s storage ability of metal–organic frameworks (MOFs). The binding energy (BE) of nitric oxide with a set of forty-two strategically selected, functionalized benzenes was investigated using Density Functional Theory calculations at the RI-DSD-BLYP/def2-TZVPP level of theory. It was found that most of the functional groups (FGs) increased the interaction strength compared to benzene. Phenyl hydrogen sulfate (–OSO3H) was the most promising among the set of ligands, with an enhancement of 150%. The organic linker of IRMOF-8 was modified with the three top-performing functional groups (–OSO3H, –OPO3H2, –SO3H). Their ability for NO adsorption was investigated using Grand Canonical Monte Carlo (GCMC) simulations at an ambient temperature and a wide pressure range. The results showed great enhancement in NO uptake constituting the above-mentioned FGs, suggesting them to be promising modification candidates in a plethora of porous materials., nitric oxide storage; metal–organic frameworks (MOFs); multi-scale approach


Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.