Electronics for Embedded Systems by Ahmet Bindal

Electronics for Embedded Systems by Ahmet Bindal

Author:Ahmet Bindal
Language: eng
Format: epub, pdf
Publisher: Springer International Publishing, Cham


The middle table in Fig. 7.9 shows how the conversion takes place if the down-rounding mechanism is used in this four-bit ADC . Prior to its operation, the four-bit up-counter is reset and produces C[3:0] = 0000. Assuming an analog voltage of 2 V is applied to the input, which must be kept constant until the conversion is complete, C[3:0] = 0000 forces the DAC output, DACOUT, to be 0 V according to the down-rounding scheme. Since this value is less than 2 V at the sample/hold circuit output, SHOUT, the output of the differential amplifier, INCR, transitions to the positive supply potential of the operational amplifier, +VCC = 5 V, which prompts the four-bit counter to increment to C[3:0] = 0001. Consequently, the DAC generates DACOUT = 0.3125 V according to the truth table in Fig. 7.9. However, this value is still less than SHOUT = 2 V. Therefore, the differential amplifier produces another INCR = 5 V which prompts the counter to increment again to C[3:0] = 0010. Up-counting continues until C[3:0] = 0111 or DACOUT = 2.1875 V. Since this last voltage is greater than SHOUT = 2 V, the differential amplifier output switches back to its negative supply voltage, −VCC = 0 V, and stops the up-counter from incrementing further. The digital output stays steady at C[3:0] = 0111 from this point forward, representing 2 V analog voltage with a dynamic error of 0.1875 V.

The table at the bottom part of Fig. 7.9 represents the conversion steps if the up-rounding mechanism is used in this ADC . External reset still produces C[3:0] = 0000 initially. However, the DAC output starts the conversion with an increased amount of 0.3125 V instead of 0 V. The counter increments until C[3:0] = 0110, and produces 2.1875 V at the DACOUT node. At this value INCR becomes 0 V, and the up-counter stops incrementing further. C[3:0] = 0110 becomes the ADC result for 2 V.



Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.