Python Deep Learning Projects by Matthew Lamons

Python Deep Learning Projects by Matthew Lamons

Author:Matthew Lamons
Language: eng
Format: epub
Tags: COM004000 - COMPUTERS / Intelligence (AI) and Semantics, COM037000 - COMPUTERS / Machine Theory, COM044000 - COMPUTERS / Neural Networks
Publisher: Packt Publishing
Published: 2018-10-31T16:48:41+00:00


The rescaling operation scales the pixel values to a range between 0 and 1.

The next step is to fit this generator on the train data:

train_datagen.fit(X_train)

Compiling the model

We need to define and compile the deep convolution model like so:

# define model

model = Sequential()

model.add(Conv2D(32, kernel_size=(3,3), input_shape=input_shape, activation = 'relu'))

model.add(MaxPool2D(2,2))

model.add(Dropout(0.2))

model.add(Conv2D(64, kernel_size=(3,3), activation = 'relu'))

model.add(MaxPool2D(2,2))

model.add(Dropout(0.2))

model.add(Conv2D(128, kernel_size=(3,3), activation = 'relu'))

model.add(MaxPool2D(2,2))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(128, activation = 'relu'))

model.add(Dropout(0.2))

model.add(Dense(10, activation = 'softmax'))



Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.