Machine Learning with Python Cookbook by Chris Albon
Author:Chris Albon
Language: eng
Format: epub, pdf
Publisher: O'Reilly Media, Inc.
Published: 2018-03-16T04:00:00+00:00
Discussion
Confusion matrices are an easy, effective visualization of a classifier’s performance. One of the major benefits of confusion matrices is their interpretability. Each column of the matrix (often visualized as a heatmap) represents predicted classes, while every row shows true classes. The end result is that every cell is one possible combination of predict and true classes. This is probably best explained using an example. In the solution, the top-left cell is the number of observations predicted to be Iris setosa (indicated by the column) that are actually Iris setosa (indicated by the row). This means the models accurately predicted all Iris setosa flowers. However, the model does not do as well at predicting Iris virginica. The bottom-right cell indicates that the model successfully predicted nine observations were Iris virginica, but (looking one cell up) predicted six flowers to be viriginica that were actually Iris versicolor.
There are three things worth noting about confusion matrices. First, a perfect model will have values along the diagonal and zeros everywhere else. A bad model will look like the observation counts will be spread evenly around cells. Second, a confusion matrix lets us see not only where the model was wrong, but also how it was wrong. That is, we can look at patterns of misclassification. For example, our model had an easy time differentiating Iris virginica and Iris setosa, but a much more difficult time classifying Iris virginica and Iris versicolor. Finally, confusion matrices work with any number of classes (although if we had one million classes in our target vector, the confusion matrix visualization might be difficult to read).
Download
Machine Learning with Python Cookbook by Chris Albon.pdf
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.
Hello! Python by Anthony Briggs(9914)
OCA Java SE 8 Programmer I Certification Guide by Mala Gupta(9795)
The Mikado Method by Ola Ellnestam Daniel Brolund(9777)
Algorithms of the Intelligent Web by Haralambos Marmanis;Dmitry Babenko(8296)
Sass and Compass in Action by Wynn Netherland Nathan Weizenbaum Chris Eppstein Brandon Mathis(7778)
Test-Driven iOS Development with Swift 4 by Dominik Hauser(7763)
Grails in Action by Glen Smith Peter Ledbrook(7696)
The Well-Grounded Java Developer by Benjamin J. Evans Martijn Verburg(7557)
Windows APT Warfare by Sheng-Hao Ma(6825)
Layered Design for Ruby on Rails Applications by Vladimir Dementyev(6555)
Blueprints Visual Scripting for Unreal Engine 5 - Third Edition by Marcos Romero & Brenden Sewell(6423)
Secrets of the JavaScript Ninja by John Resig Bear Bibeault(6413)
Kotlin in Action by Dmitry Jemerov(5062)
Hands-On Full-Stack Web Development with GraphQL and React by Sebastian Grebe(4316)
Functional Programming in JavaScript by Mantyla Dan(4038)
Solidity Programming Essentials by Ritesh Modi(3995)
WordPress Plugin Development Cookbook by Yannick Lefebvre(3786)
Unity 3D Game Development by Anthony Davis & Travis Baptiste & Russell Craig & Ryan Stunkel(3730)
The Ultimate iOS Interview Playbook by Avi Tsadok(3705)
