Hands-on Scikit-Learn for Machine Learning Applications by David Paper

Hands-on Scikit-Learn for Machine Learning Applications by David Paper

Author:David Paper
Language: eng
Format: epub
ISBN: 9781484253731
Publisher: Apress


def get_scores(model, Xtest, ytest):

y_pred = model.predict(Xtest)

return np.sqrt(mean_squared_error(ytest, y_pred)),\

model.__class__.__name__

if __name__ == "__main__":

br = '\n'

X = np.load('data/X_boston.npy')

y = np.load('data/y_boston.npy')

print ('feature shape', X.shape)

print ('target shape', y.shape, br)

X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=0)

print ('rmse:')

rfr = RandomForestRegressor(random_state=0, n_estimators=100)

rfr.fit(X_train, y_train)

rmse, rfr_name = get_scores(rfr, X_test, y_test)

print (rmse, '(' + rfr_name + ')')

lr = LinearRegression().fit(X_train, y_train)

rmse, lr_name = get_scores(lr, X_test, y_test)

print (rmse, '(' + lr_name + ')')

ridge = Ridge(random_state=0).fit(X_train, y_train)

rmse, ridge_name = get_scores(ridge, X_test, y_test)

print (rmse, '(' + ridge_name + ')')

lasso = Lasso(random_state=0).fit(X_train, y_train)

rmse, lasso_name = get_scores(lasso, X_test, y_test)

print (rmse, '(' + lasso_name + ')')

en = ElasticNet(random_state=0).fit(X_train, y_train)

rmse, en_name = get_scores(en, X_test, y_test)

print (rmse, '(' + en_name + ')')

scaler = StandardScaler()

X_train_std = scaler.fit_transform(X_train)

X_test_std = scaler.fit_transform(X_test)

sgdr_std = SGDRegressor(random_state=0, max_iter=1000, tol=0.001)

sgdr_std.fit(X_train_std, y_train)

rmse, sgdr_name = get_scores(sgdr_std, X_test_std, y_test)

print (rmse, '(' + sgdr_name + ' - scaled)')



Download



Copyright Disclaimer:
This site does not store any files on its server. We only index and link to content provided by other sites. Please contact the content providers to delete copyright contents if any and email us, we'll remove relevant links or contents immediately.